# Applying an Economic Framework in the Reclaimed Water Feasibility Study

Bob Raucher Jim Henderson Stratus Consulting Inc. Boulder, CO

**MWPAAC** Meeting

October 24, 2007



#### Overview

- Overview for the Feasibility Study (FS) as a whole
- Brief Refresher on the Economic Framework
- Applying the Economic Framework within the Context of the FS
- Reviewing the "Illustrations"
  - A preview of what will be detailed in the FS



### Intent of the Feasibility Study

- Feasibility Study (FS) as first step in longer process
  - Addresses points raised by Regional Water Quality Committee
    - Review technologies, financing sources, and update regional market
    - Review possible enviro and regional benefits
  - Does NOT green light any specific RW projects
- To be followed by a recommendation to develop a Comprehensive Plan



### Refresher/Overview of Economic Framework

- Financial versus Economic perspectives
  - Financial: revenues and costs (cash flows)
  - Economics: benefits (social value) v. costs
  - Cash flow versus net social benefits
- Cost-effectiveness (C-E) v. Benefit-Cost Analysis (BCA)
  - Link to Triple Bottom Line (TBL)
  - Key types of benefits (values) to consider




### Why the Financials May Look Unfavorable

#### Revenues from reuse projects often limited

- Pricing strategies and other constraints
  - Reuse often priced to sell water at below cost of potable supplies
  - Nationwide, potable supplies often underpriced (e.g., average v. marginal costs, infrastructure)
- Volume of sales may be limited to targeted uses and by proximity to delivery infrastructure



## Revenues versus Costs for Typical Potable and RW Approaches





### Why Look at the Economic Perspective?

- For many reuse projects, the <u>benefits</u> (i.e., value) to society <u>may outweigh the costs</u>
  - Broad range of benefits (some obscure)
  - Large and diverse set of beneficiaries
- Where benefits shown to outweigh costs:
  - Identify benefits and beneficiaries who might not be ratepayers (outside of service area)
  - Positive externalities become a valid basis for seeking cost sharing and subsidies



### Counting All the Benefits

\$

Storage and distribution costs

On-site retrofit costs

Avoided and deferred water supply costs

Treatment costs

Avoided and deferred wastewater costs



Costs

Benefits

### Counting All the Benefits

\$

| costs                  | Increased local control                 |
|------------------------|-----------------------------------------|
|                        | Increased water supply reliability      |
| On-site retrofit costs | Avoided and deferred water supply costs |
| Treatment costs        | Avoided and deferred wastewater costs   |



Benefits

Storage and distribution

### Counting All the Benefits

\$

Enhanced wetlands quality and habitat

Improved in-stream flows and water quality

Increased local control

Increased water supply reliability

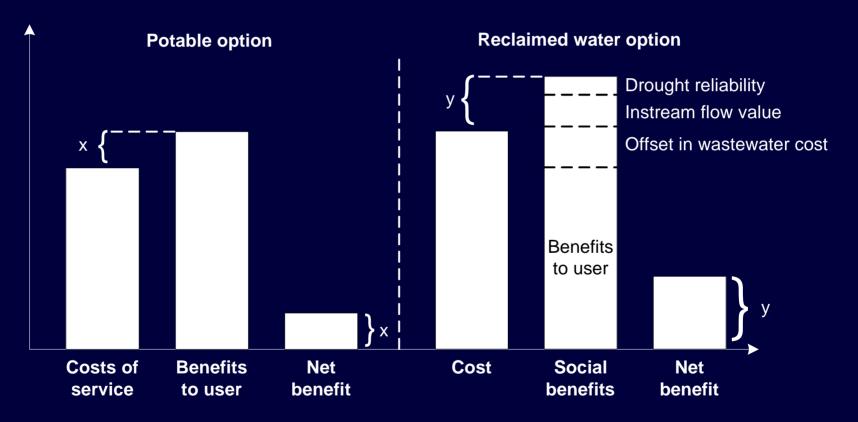
Avoided and deferred water supply costs

Avoided and deferred wastewater costs

Stratus

Costs

On-site retrofit costs


Treatment costs

Storage and distribution

costs

Benefits

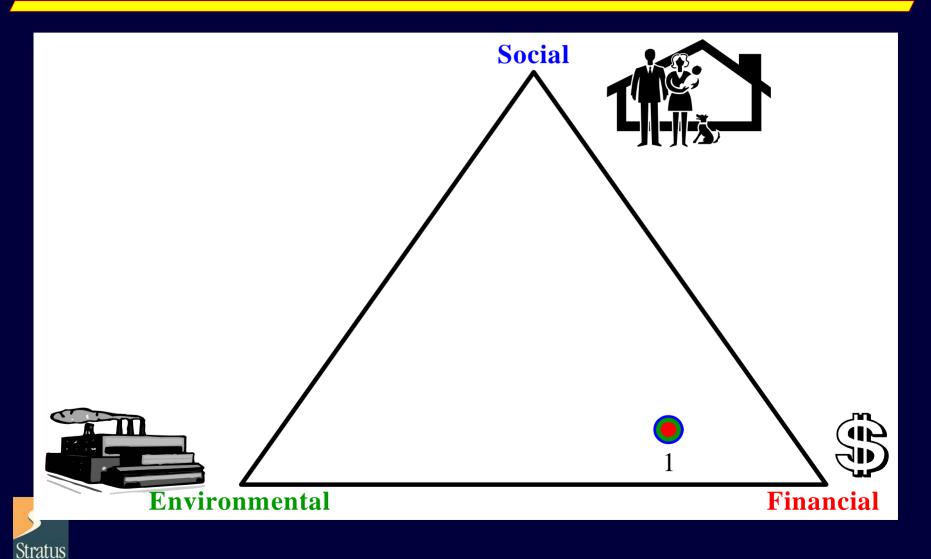
### Some RW Uses May Offer Higher Net Benefits than Alternatives



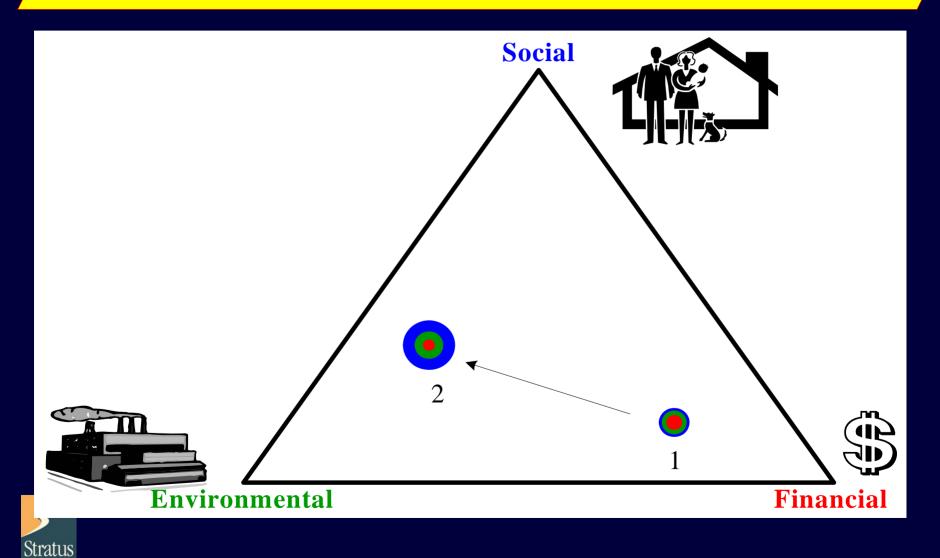


### Link to Triple Bottom Line

- TBL can be a useful approach for trying to reflect broad array of all benefits (and costs)
- Three bottom lines, to reflect:
  - Financial results (cash flow, revenues & costs)
  - Social outcomes (e.g., employment, equity)
  - Environmental (e.g., instream flows, fisheries)
- In essence, TBL = an initial step of a social benefit-cost analysis
  - Identifying <u>all</u> benefits & costs; both internal and external




### Types of Benefits


- Financial Benefits
  - Avoided costs in water supply development or wastewater management
- Social Benefits
  - Increased water supply reliability
  - Promoting community values (e.g.,green ethic, enviro justice, ag. land preservation)
  - Potentially increased aesthetics
  - Flexibility / hedge against uncertain future
- Environmental Benefits
  - Instream flow and temperature; ESA aspects
  - Improved quality in effluent receiving waters



# Choosing the Least Cost Option May Not Deliver Social and Environmental Values to the Community



# Options that Meet Broader Goals May Increase Financial Costs to a Utility, but Yield Larger Net Benefits to the Community



#### Intent of the Economic Framework

- Typically, intent is to apply systematically to specific projects
  - To determine if project benefits justify costs
  - To compare option to its viable alternatives
- In context of King County RW Feasibility Study
  - RW program in early development
  - Hence framework applied at preliminary level
- Useful for identifying issues and approaches
  - Intent is to use full framework in future, on more fully defined projects



#### Overview of the Framework

- 1. Define the baseline (work w/ stakeholders)
- 2. Define relevant options
- 3. Identify full range of benefits and costs
- 4. Screen benefits and costs
- 5. Quantify benefits and costs (to extent feasible)
- 6. Value benefits and costs (to extent feasible)
- 7. Qualitatively describe nonquantifiable Bs & Cs
- 8. Summarize and compare benefits and costs



### Overview of Framework (cont.)

- 9. List and <u>assess all omissions</u>, biases, and uncertainties (OBUs)
- 10. Conduct sensitivity analyses
- 11. Compare results to stakeholder perceptions
- 12. Use as communication tool throughout
  - Document key inputs and assumptions
  - Promote transparency
  - Embrace stakeholder input



### Defining the Baseline

- A critical key to a good economic analysis is to ensure proper definition of the <u>baseline</u>
  - Intent is "without project" v. "with project"
  - For RW, a key is to look broadly at all the water resource challenges facing the region in the future
- Defining the baseline can be real challenge
  - "The future ain't what it used to be." (Yogi Berra)
  - Given climate change, ESA issues, & other factors, we need to consider alternative futures



### Baseline: Regional Water Resource Challenges

- Protect and enhance surface water quality
  - Limit effluent discharge to Puget Sound
- Protect and restore threatened/endangered populations
  - Improve instream flows and temperatures
- Assure reliability of regional water supply
  - Avoid stress on regional supplies
- Adhere to and reflect community environmental values





#### **Alternative Baselines**

- Status quo
  - Future closely resembles today
  - Basis for FS Illustrations
- Climate change impacts
  - e.g., hotter, longer, drier summers?
- Increased pressure on threatened/endangered species
  - e.g., heightened need to preserve, augment, restore
- Puget Sound Initiative
  - e.g., cost of WW discharge elevated



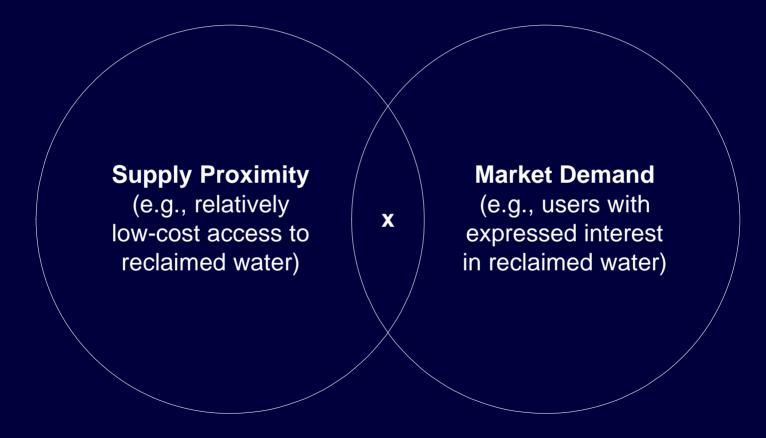
## Equity Perspectives (who pays, who benefits?)

- Beneficiaries are case-specific:
  - On-site: e.g., RW users who enjoy lower cost of RW relative to potable supply cost
  - Off-site: e.g., salmon habitat supporters regionwide and beyond
- Cost bearers also depend on specifics, e.g.:
  - How any net revenue shortfall is covered
  - Whether RW creates cost offsets
  - Presence of external or partner funding (e.g., cost sharing, grants)



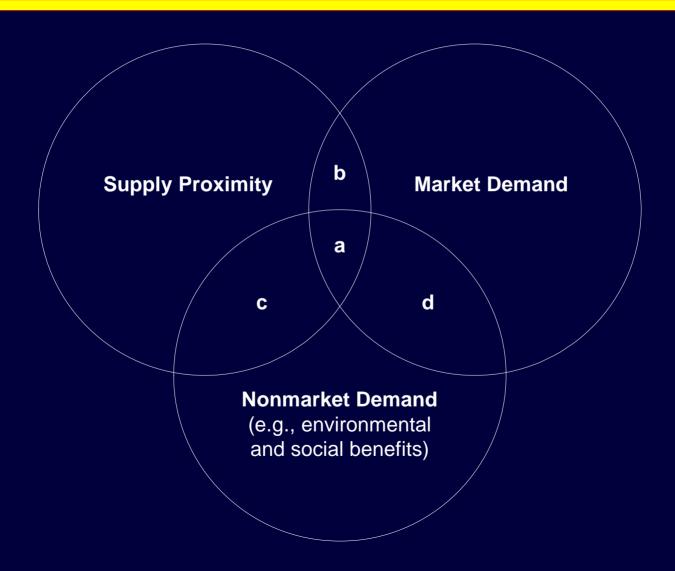
#### **Economic Framework in FS Context**

- Economic Framework within the context of the Feasibility Study: What it is NOT
  - RW program in early stages of consideration
  - Most key "policy" issues still open to discussion
    - Pricing and cost recovery
    - Wholesale/retail arrangements




### Framework in FS Context (cont)

- Economic Framework within the context of the Feasibility Study -- What it IS:
  - Useful to guide program development
  - Basis for more formal assessments if/as program takes shape in future
    - When specific projects emerge for consideration
    - Including relevant comparisons to water supply alternatives




# Typical "Market-Based" Approach to RW Program Development





## Adding Nonmarket Values to Help Guide a RW Program





#### The Illustrations

- Seven possible future RW applications assessed
  - Projects are simply illustrations
    - As described in last meeting
  - 30,000 foot overview (not full framework)
  - Not selected as the "best" cases
    - Some look better than others
  - Simply a range of possible RW uses, from north to south



### Key Assumptions in Illustrations

- Financial assumptions for these analyses
  - Backbone and other existing facilities are sunk cost
  - Local distribution costs to the user's property line are generally included in project costs
  - We apply a price for RW at 80% of the applicable potable rate
- These are plausible assumptions, placeholders
  - Do not necessarily imply County policies



#### Overview of Illustrations

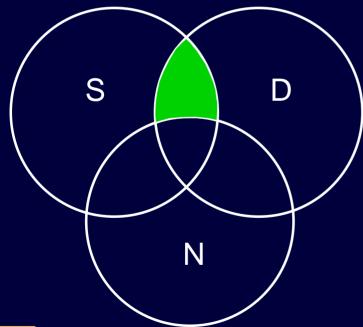
- A brief overview and summary provided for each of the seven illustrations
  - Uses the Venn diagram and TBL triangle to help summarize
  - Additional detail provided on some of the illustrations (and even more in FS)
- Illustrations serve as a starting point
  - Reveal range of possible outcomes
  - Help guide future program and discussions



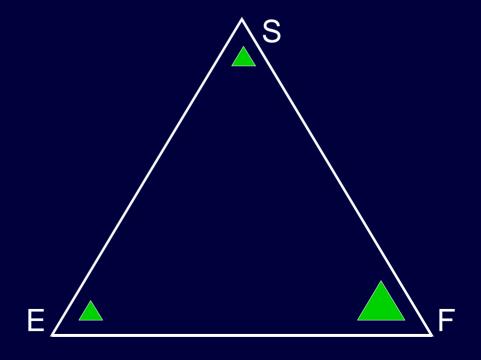
#### **Bothell Business Park**

- RW replaces potable for commercial landscape irrigation (and some potential other uses)
- Proximity to Brightwater makes this a relatively low cost exercise
- Revenues (based on 80% of applicable potable rate) outweigh annualized costs




### Bothell Business Park Illustration in Greater Depth

- Insights on optimizing within project design
  - Cost savings due to delaying delivery
  - Large impact on net revenues
- Possible cost-sharing improves net revenues (and alters "perspectives" assessment)
- Opportunities for other customers to tap into extended distribution lines




#### **Bothell Business Park Illustration**

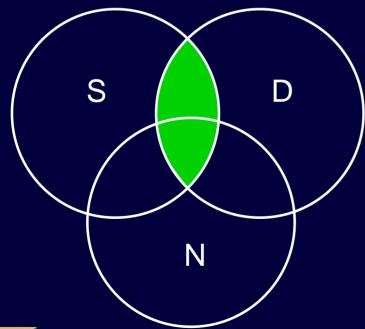
### Value-cost prospects



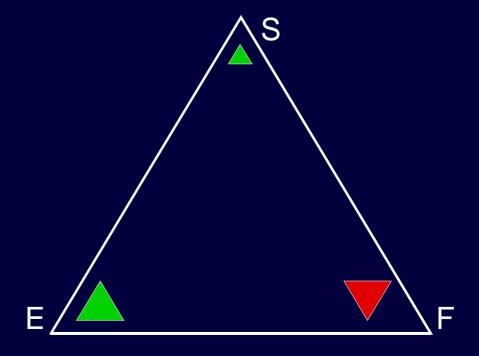
### TBL prospects






### Marymoor Park

- RW replaces potable supply for park landscape irrigation
- Involves extension of RW transmission line from Willows Run
- Savings in potable water payments offset by cost of delivering RW (net costs > 0)
- Potential benefits include possible instream flow enhancement and more extensive irrigation of park




### Marymoor Park Illustration

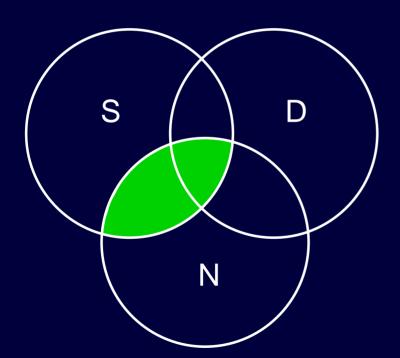
### Value-cost prospects



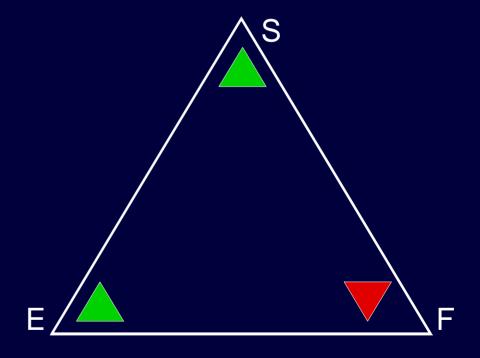
### TBL prospects






### Sammamish Agricultural Irrigation

- RW replaces surface & groundwater extractions by commercial growers
- Illustration does not include revenue generation
  - Swap RW to obtain & retire water rights
- Benefits include
  - Enhanced summer flows in Sammamish River
  - Improved agricultural production & agricultural lands preservation
  - Improves prospects for Hmong farmers (environmental justice)




### Sammamish River Agriculture Illustration

Value-cost prospects



TBL prospects





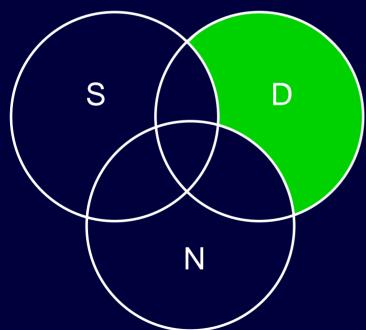
# Sammamish Agricultural Irrigation illustration in greater depth

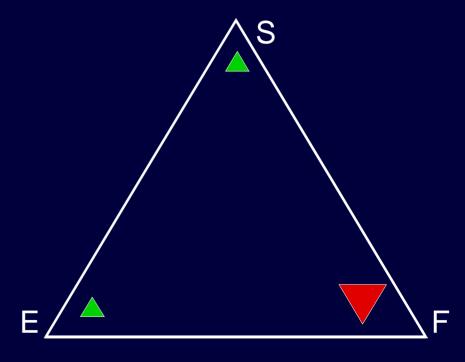
- Assuming no revenue collected (e.g., water rights impacting River are retired in lieu of payment for RW)
  - \$290,000 per year cost to provide RW
  - Simple "Benefits Transfer" can help indicate if cost may be warranted by environmental / salmon value
- Quantity aspect and assumptions
  - 1300 AF per year current irrigation
  - 50% hydraulic connection to River
  - 650 AF added to stream flow over 150-day season
  - 4.3+ AF/day => 2.2 cfs added daily to stream flow



# Sammamish River illustration in greater depth (continued)

- Valuation approach and assumptions
  - 2 "willingness to pay" studies show ~\$11 annually per household to preserve instream flows for threatened/endangered species
  - Applied to 750,000 households in King Co => \$8.6 M per year value for region as a whole
  - Sammamish ~ 6% of flow-limited salmon stream miles
  - 6% of \$8.6 M => over \$500,000 per year
- Alternative study: \$245+/AF for ESA instream flow rights
  - \$160,000 per year (\$245 \* 650 AF)
- On net, project costs of \$290,000 per year may be justified


#### **Nucor Steel**


- RW replaces potable for industrial processes
- Relatively high cost to provide RW (satellite plant)
  - RW revenues (at 80% potable) are well below costs
- Benefits include
  - Reduced secondary effluent to Puget Sound
  - Cost-savings to local industry could provide economic boost



## Nucor Steel Illustration

## Value-cost prospects



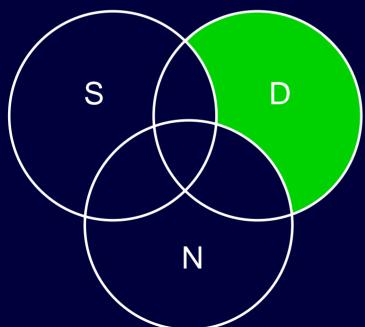


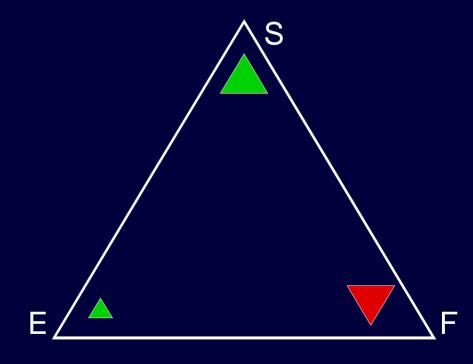


## Nucor Steel in greater depth

- All figures are preliminary estimates
- Costs to provide RW ~ \$ 370,000 per year
- Revenues, based at retail potable rate:
  - RW at 80% retail rate: ~ \$ 245,000 per year
  - RW at 100% retail rate: ~ \$ 305,000 per year
- Net revenues: \$125,000 to \$65,000 per year
- Cost savings to Nucor: up to ~ \$60,000 per year




#### Newcastle Golf Course


- RW replaces potable supply for golf course irrigation
- Satellite plant implies relatively high cost of RW
- Revenues fall well short of covering costs
- Benefits include
  - Reduced secondary effluent to Puget Sound
  - Frees potable supply for other needs (offsets or postpones new supply development)



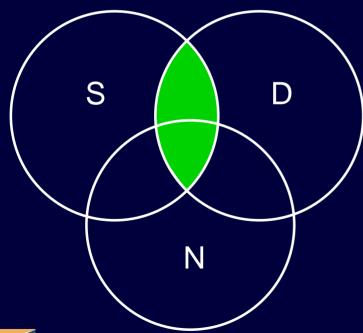
#### Newcastle Golf Course Illustration

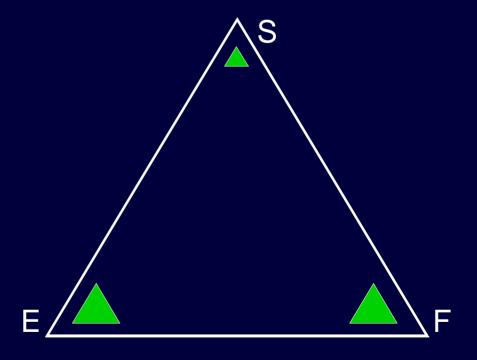
# Value-cost prospects








#### Foster Golf Links


- Reclaimed water replaces extractions from Lower Green River
- Revenues exceed costs (helped by proximity to existing South Plant facility and pipeline)
- Benefits include
  - Improved instream flows for Green River (and hence better conditions for salmon)
  - Higher level of irrigation for Foster Golf Links



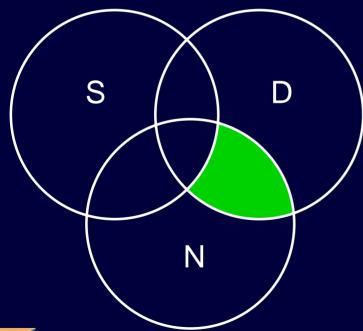
## Foster Golf Links Illustration

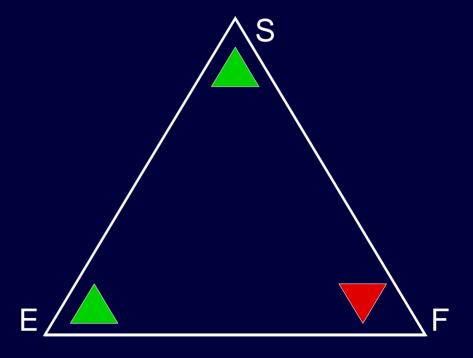
## Value-cost prospects








## South County/Green River Valley


- Very preliminary exploration of issues
- Water resource challenges suggest high potential for benefits from RW applications
  - Exchanges to enable further extractions of local groundwater to meet rapid growth need
  - Environmental uses to enhance instream flows and/or wetlands (and aiding salmon)
- RW may be very costly if applied in traditional purple pipe approach (per Brown and Caldwell study)
- Challenge: Finding creative, lower cost way to use RW to address the challenges



# South County/Green River Valley Illustration

Value-cost prospects







### Findings from FS Illustrations

- For RW programs nationwide, cost of service typically exceeds anticipated revenues
  - Illustrations show a mix of net revenue outcomes may arise in King County
- Important to look beyond net revenues to broader net benefit (benefit-cost) perspective
  - RW offers opportunity to address various regional water resource challenges
  - Environmental and social benefits may in some instances be highly valued



## Findings from FS Illustrations (2)

- Perspectives on who ultimately pays and who obtains benefits are case-specific, depending on:
  - Types of benefits generated
  - How any revenue shortfalls are covered
- Illustrations serve as a starting point
  - Reveal range of possible outcomes
  - Help guide future program and discussions
- Next steps, beyond the FS, will help address many remaining questions and policy issues



#### How to reach us:

Bob Raucher and Jim Henderson

braucher@stratusconsulting.com

jhenderson@stratusconsulting.com

303-381-8000 (ext 216, or ext 266)

\_\_\_\_\_

Stratus Consulting Inc

1881 9th St

Suite 201

Boulder, CO 80302

